Products of the Decomposition of the Anion of a 4a-Hydroperoxyisoalloxazine Hindered in the 9a and 1Oa Positions

By **THOMAS** C. BRUICE* and **AUDREY** MILLER

(Department of Chemistry, University of California, Santa Barbara, CA **93106)**

Summary Products formed from the decomposition of the 4a-peroxy-anion of the flavin **(Id)** are only accountable through reactions involving the 4a-hydroperoxide anion ; kinetic and product studies both argue against the involvement of a $4a \rightarrow 10a$ peroxy-anion migration.

THE reaction of molecular oxygen with reduced flavomonooxygenase provides an enzyme-bound 4a-hydroperoxide of the flavin cofactor.1 We have found, in biomimetic reactions, that the flavin 4a-peroxide **(la)** is a most efficient reagent for the mono-oxygenation of organic sulphides² and amines³ and in the chemiluminescent oxidation of aldehydes,^{2,4,5} and that the 4a-peroxy-flavin anions, (1b) and (1d), transfer dioxygen to ambident anions.^{6,7,8,9} It has been proposed¹⁰ that the enzyme-bound 4a-hydroperoxyflavin serves as a 'storage form' and that $4a \rightarrow 10a$ migration of the hydroperoxy-group occurs prior to the oxygen transfer events. To test this concept, we synthesized **(lc)** and determined the rate constants for mono-oxygen and dioxygen transfer. 9 The lack of a steric effect¹¹ upon exchanging methyl for 2',6'-dimethylphenyl at the **10** position does not support a $4a \rightarrow 10a$ migration of the

hydroperoxy- and peroxy-anions prior to mono- and dioxygen transfer. The objective of the present investigation has been to ascertain if the products of decomposition of (1d) indicate a $4a \rightarrow 10a$ peroxy-anion migration *via* a 4a, l0a-dioxetan.

- **(1)**
- **a**; $R^1 = R^2 = R^3 = R^4 = Me$, $R^5 = OH$, $R^6 = Et$
- **b**; $R^1 = R^2 = R^3 = R^4 = Me$, $R^5 = 0^-$, $R^6 = Et$
 c; $R^1 = R^2 = H$, $R^3 = 2,6$ -Me₂C₆H₃, $R^4 = Me$, $R^5 = OH$,
-
- **R**₆ = **Et**
 d; $R^1 = R^2 = H$, $R^3 = 2.6$ -Me₂C₆H₃, $R^4 =$ Me, $R^5 = 0$ ⁻, **d**; $R^1 = R^2 = H$, $R^3 = 2.6$ -Me₂C₆H₃, $R^4 =$ Me, $R^5 = 0$ ⁻,
- $R^6 = Et$
- **e**; $R^1 = \mathbb{R}^2 = \mathbb{R}^5 = \mathbb{H}$, $R^3 = 2.6 \cdot \text{Me}_2\text{C}_6\text{H}_3$, $R^4 = \text{Me}_7$, $R^6 = \text{Et}$

A solution of $(1c)^{9}$ $[1.62 \times 10^{-4} \text{ mol}$ $(94\% \text{ pure})$ in 100 ml of dry Bu^tOH] was stirred (N_2) with a solution of ButOK $(2.05 \times 10^{-4} \text{ mol in } 100 \text{ ml of } 50^{+1} \text{ (m)}$ (12 min); mixture was then acidified with oxygen-free acetic acid, the solvent removed, and the residue triturated with $CH₂Cl₂$. From thick layer chromatography on silica gel (EtOAc eluent) the following were obtained: \uparrow 9% (2a) (from cyclohexane) (m.p. 155-158 °C), 3-7% (1e), and 57% (3a) (benzene-cyclohexane) (m.p. $217-218.5$ °C). Compound **(2a)** was hydrolysed **(3~** HCl) to **(2b),** an authentic sample of which was synthesized by thermal condensation of **2-N-(2,6-dimethylphenyl)aniline1fb** with diethyl oxalate, and ethylation of the resultant **1,2,3,4-tetrahydro-l-(2,6** dimethylphenyl)-2,3-dioxoquinoxaline (m.p. 297-297.5 °C from methanol)[†] with diethyl sulphate and NaH in toluene.

 (4) R = 2,6 – Me₂C₆ H₃

 (5)

This authentic $(2b)$ (m.p. 133.5-136.5 °C) was identical (m.p., i.r., n.m.r) with the product obtained from the hydrolysis of **(2a).** The yield *(yo)* of **(le)** was established by its conversion into (4) $(550 \text{ nm}, \epsilon \cdot 8000 \text{ l mol}^{-1} \text{ cm}^{-1})$ by acidification with HClO,. Assignment of a l0a-spiro structure to **(3a)** is based upon the chemical shift $(\delta 4.26)$ of the methylene protons of the ethyl substituent at N-5. These methylene protons, for the known l0a-spirohydantoins, resonate at δ 4.07, [(3b); structure by X-ray crystallography^{[12} and 4.01 [for $(3c)$]¹³ In contrast, the methylene protons of the N^5 -ethyl substituent of the 4a-spirohydantoin isomer of the l0a-spirohydantoin **(3c)** fall at higher field $(\delta 3.05)$.¹³ There is also formed (u.v-vis. spectra) about 5% of the isoalloxazine (Fl_{ox}).

Isoalloxazine-4a-hydroperoxy-anions decompose to yield, in part, **1,5-dihydroisoalloxazine** (FlEtH) **.6** An aliquot of the acidified reaction solution was treated with excess of **4-hydroxy-2,2,6,6-tetramethylpiperidinone** N-oxyll4 and the concentration of N^5 -ethylisoalloxazine radical determined spectrally $[\lambda_{\text{max}} 636 \ (\epsilon \ 2800) \ \text{and} \ 590 \ \text{nm} \ (\epsilon \ 2700)].$ The yield of FIEtH, based on this assay, was 45% . In another experiment, the product analysis for products from **(Id)** was repeated, starting with FlEtH. Compounds **(3a)** (28%) and $(1c)$ (9%) were formed. Combination of the results of these experiments leads to equation (1).

(1e) + **(34** + **@a)** 4- Flox *ca.* 3% 44% *ca.* 9% *ca.* 5% (1) r *-0, 0,* **(Id)** - **(5)** - **(1~)** + **(34 45%** *ca.* **4%** 13%

It is obvious that the various products of decomposition must arise from (1d) without recourse to a $4a \rightarrow 10a$ migration of the peroxy-anion.

This study was supported by a grant from the National Institutes of Health **(U.S.A.).**

(Received, 31st March 1980; *Corn.* 340.)

t **All new compounds gave satisfactory analytical and spectroscopic data.**

- ¹ V. Massey and P. Hemmerich in 'The Enzymes,' ed. P. D. Boyer, Academic Press, New York, 1976, Vol. XII, p. 191.
² C. Kemal, T. W. Chan, and T. C. Bruice, *Proc. Natl. Acad. Sci. USA*, 1977, **74**, 405.
-
-
- ³ S. Ball and T. C. Bruice, *J. Am. Chem. Soc.*, 1979, 101, 4017.
⁴ C. Kemal and T. C. Bruice, *Proc. Natl. Acad. Sci. USA*, 1976, **73**, 995.
- ⁵ C. Kemal and T. C. Bruice, *J. Am. Chem. Soc.*, 1977, 99, 7064.

⁶ C. Kemal and T. C. Bruice, *J. Am. Chem. Soc.*, 1979, 101, 1635.

⁷ S. Muto and T. C. Bruice, *J. Am. Chem. Soc.*, 1980, 102, in the press.
-
-
-
-
- *⁸*S. **Muto and T. C. Bruice, unpublished results. 9 A. Miller and T. C. Bruice, J.** *Chem. SOC., Chem. Commun.,* **1979, 896.**
- ¹⁰ P. Hemmerich and A. Wessiak in 'Flavins and Flavoproteins,' ed. T. P. Singer, Elsevier, Amsterdam, The Netherlands, 1976, p. 1.
¹¹ (a) S. B. Smith and T. C. Bruice, *J. Am. Chem. Soc.*, 1975, 97, 2875; (b) L. Main,
- **¹²T.** *C.* **Bruice, I. Masaki, H. L. Carrell, and** J. **P. Glusker, J.** *Am. Chem. SOC.,* **1980, 102, in the press. 1972, 11, 3991.**
- **1s H. I. X. Mager,** *Tetrahedron Lett.,* **1979, 3549.**
- **¹⁴T. W. Chan and T. C. Bruice, J.** *Am. Chem.* Soc., **1977, 99, 7287.**