Products of the Decomposition of the Anion of a 4a-Hydroperoxyisoalloxazine Hindered in the 9a and 10a Positions

By THOMAS C. BRUICE* and AUDREY MILLER

(Department of Chemistry, University of California, Santa Barbara, CA 93106)

Summary Products formed from the decomposition of the 4a-peroxy-anion of the flavin (1d) are only accountable through reactions involving the 4a-hydroperoxide anion; kinetic and product studies both argue against the involvement of a $4a \rightarrow 10a$ peroxy-anion migration.

THE reaction of molecular oxygen with reduced flavomonooxygenase provides an enzyme-bound 4a-hydroperoxide of the flavin cofactor.1 We have found, in biomimetic reactions, that the flavin 4a-peroxide (1a) is a most efficient reagent for the mono-oxygenation of organic sulphides² and amines3 and in the chemiluminescent oxidation of aldehydes, 2,4,5 and that the 4a-peroxy-flavin anions, (1b) and (1d), transfer dioxygen to ambident anions.^{6,7,8,9} It has been proposed¹⁰ that the enzyme-bound 4a-hydroperoxyflavin serves as a 'storage form' and that $4a \rightarrow 10a$ migration of the hydroperoxy-group occurs prior to the oxygen transfer events. To test this concept, we synthesized (1c) and determined the rate constants for mono-oxygen and dioxygen transfer.⁹ The lack of a steric effect¹¹ upon exchanging methyl for 2',6'-dimethylphenyl at the 10position does not support a $4a \rightarrow 10a$ migration of the

hydroperoxy- and peroxy-anions prior to mono- and dioxygen transfer. The objective of the present investigation has been to ascertain if the products of decomposition of (1d) indicate a $4a \rightarrow 10a$ peroxy-anion migration via a 4a.10a-dioxetan.

- (1)
- a; $R^1 = R^2 = R^3 = R^4 = Me$, $R^5 = OH$, $R^6 = Et$ b; $R^1 = R^2 = R^3 = R^4 = Me$, $R^5 = O^-$, $R^6 = Et$ c; $R^1 = R^2 = H$, $R^3 = 2,6$ -Me₂C₆H₃, $R^4 = Me$, $R^5 = OH$,

- $\begin{array}{l} R_6 = Et \\ \textbf{d}; \ R^1 = R^2 = H, \ R^3 = 2,6\text{-Me}_2C_6H_3, \ R^4 = Me, \ R^5 = O^{-}, \end{array}$
- R⁶ = Et
- e; $\mathbf{\hat{R}^{1} = \bar{R}^{2} = R^{5} = H, R^{3} = 2,6\text{-Me}_{2}C_{6}H_{3}, R^{4} = Me, R^{5} = F^{+}$ R⁶ == Et

A solution of $(1c)^9$ $[1.62 \times 10^{-4} \text{ mol} (94\% \text{ pure})$ in 100 ml of dry Bu^tOH] was stirred (N₂) with a solution of Bu^tOK $(2.05 \times 10^{-4} \text{ mol in } 100 \text{ ml of } Bu^tOH)$ (12 min); mixture was then acidified with oxygen-free acetic acid, the solvent removed, and the residue triturated with CH₂Cl₂. From thick layer chromatography on silica gel (EtOAc eluent) the following were obtained: † 9% (2a) (from cyclohexane) (m.p. 155-158 °C), 3-7% (1e), and 57% (3a) (benzene-cyclohexane) (m.p. 217-218.5 °C). Compound (2a) was hydrolysed (3N HCl) to (2b), an authentic sample of which was synthesized by thermal condensation of 2-N-(2,6-dimethylphenyl)aniline¹¹b with diethyl oxalate, and ethylation of the resultant 1,2,3,4-tetrahydro-1-(2,6dimethylphenyl)-2,3-dioxoquinoxaline (m.p. 297-297.5 °C from methanol)[†] with diethyl sulphate and NaH in toluene.

(4) R=2,6-Me₂C₆H₃

(5)

This authentic (2b) (m.p. 133.5-136.5 °C) was identical (m.p., i.r., n.m.r) with the product obtained from the hydrolysis of (2a). The yield (%) of (1e) was established by its conversion into (4) (550 nm, ϵ 8000 l mol⁻¹ cm⁻¹) by acidification with HClO4. Assignment of a 10a-spiro structure to (3a) is based upon the chemical shift $(\delta 4.26)$ of the methylene protons of the ethyl substituent at N-5. These methylene protons, for the known 10a-spirohydantoins, resonate at δ 4.07, [(3b); structure by X-ray crystallography]¹² and 4.01 [for (3c)]¹³ In contrast, the methylene protons of the N^5 -ethyl substituent of the 4a-spirohydantoin isomer of the 10a-spirohydantoin (3c) fall at higher field (δ 3.05).¹³ There is also formed (u.v-vis. spectra) about 5% of the isoalloxazine (Flox).

Isoalloxazine-4a-hydroperoxy-anions decompose to yield, in part, 1,5-dihydroisoalloxazine (FlEtH).⁶ An aliquot of the acidified reaction solution was treated with excess of 4-hydroxy-2,2,6,6-tetramethylpiperidinone N-oxyl¹⁴ and the concentration of N^{5} -ethylisoalloxazine radical determined spectrally [λ_{max} 636 (ϵ 2800) and 590 nm (ϵ 2700)]. The yield of FlEtH, based on this assay, was 45%. In another experiment, the product analysis for products from (1d) was repeated, starting with FIEtH. Compounds (3a) (28%) and (1c) (9%) were formed. Combination of the results of these experiments leads to equation (1).

It is obvious that the various products of decomposition must arise from (1d) without recourse to a $4a \rightarrow 10a$ migration of the peroxy-anion.

This study was supported by a grant from the National Institutes of Health (U.S.A.).

(Received, 31st March 1980; Com. 340.)

† All new compounds gave satisfactory analytical and spectroscopic data.

- ¹ V. Massey and P. Hemmerich in 'The Enzymes,' ed. P. D. Boyer, Academic Press, New York, 1976, Vol. XII, p. 191. ² C. Kemal, T. W. Chan, and T. C. Bruice, Proc. Natl. Acad. Sci. USA, 1977, 74, 405.
- ³ S. Ball and T. C. Bruice, J. Am. Chem. Soc., 1979, 101, 4017.

- ⁶ S. Ball and T. C. Bruice, Proc. Natl. Soct., 1918, 1017, 4017.
 ⁶ C. Kemal and T. C. Bruice, Proc. Natl. Acad. Sci. USA, 1976, 73, 995.
 ⁵ C. Kemal and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7064.
 ⁶ C. Kemal and T. C. Bruice, J. Am. Chem. Soc., 1979, 101, 1635.
 ⁷ S. Muto and T. C. Bruice, J. Am. Chem. Soc., 1980, 102, in the press.
- ⁸ S. Muto and T. C. Bruice, unpublished results.

- ⁹ A. Miller and T. C. Bruice, J. Chem. Soc., Chem. Commun., 1979, 896.
 ¹⁰ P. Hemmerich and A. Wessiak in 'Flavins and Flavoproteins,' ed. T. P. Singer, Elsevier, Amsterdam, The Netherlands, 1976, p. 1.
 ¹¹ (a) S. B. Smith and T. C. Bruice, J. Am. Chem. Soc., 1975, 97, 2875; (b) L. Main, G. J. Kasperek, and T. C. Bruice, Biochemistry, 1972, **11**, 3991.
- ¹² T. C. Bruice, I. Masaki, H. L. Carrell, and J. P. Glusker, J. Am. Chem. Soc., 1980, 102, in the press.
- ¹³ H. I. X. Mager, Tetrahedron Lett., 1979, 3549.
- ¹⁴ T. W. Chan and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7287.